Human Dielectric Equivalent Model

Honeywell

Project: Dec 15-02

1

Team

- Honeywell Contacts
 - Cory Nelson Engineer III Electrical
 - Steven Melton Engineer II Electrical
- Advisor
 - Dr. Jiming Song
 Professor
 Iowa State University

Team

- Stephen Nelson
 - Team Leader
 - Control Systems
- Jacob Schoneman
 - Concept Holder
 - Control Systems
- Andrew Connelly
 - Co-webmaster
 - Software
- Cory Snooks
 - Communication Director / Co-webmaster
 - Analog/RF Design

Overview

- Background
 - Problem Statement
 - Specifications and Requirements
- Approach
 - Research
 - Properties/Equations
 - Materials
 - Simulation
 - Testing
- Results

Problem Statement

 Honeywell needs a physical human body equivalent model for testing electronics

- \bullet Three frequency ranges were identified for testing: 3 100 kHz, 10 20 MHz, and 150 600 MHz
- Frequency range was narrowed to 300 kHz 40 MHz

Functional Requirements

- Simulate frequencies in the 300 kHz 40 MHz range
- The phantom will only model the torso
- Accuracy of dielectric properties of at least 75% when compared to a human body
- Multiple means of transmission coupling
- Only low power signals will be used

Non-functional Requirements

- The phantom should have a shelf life of 2 weeks
- Withstand temperatures beyond human comfort zones
- The phantom will be maintenance free during its lifetime

Means of Transmission

Means of Transmission

Galvanic Coupling

Approach

- Research
- Properties/Equations
- Materials
- Simulation
- Testing

Tissue Properties Research

• Tissue properties

- Which tissues to consider
- Which tissues to leave out
- Reasons for selecting certain tissues
- Tissue percentage by total body weight
- Average conductivity of human body
 - Baseline value of .46 S/m

Phantom Research

- Phantom types
 - Resin based
 - Saline solution based
 - Gelatin based
 - Agar based

Electromagnetics Research

- Target conductivity versus permittivity
- Skin acts as an insulator at DC
- Skin acts more like conductor as frequency increases
- More accurate to treat the body as a dielectric waveguide

Properties/Equations

• Conductivity • σ [S/m] = $\frac{l}{RA}$

Complex Conductivity

• σ'' [S/m] = σ' + j $\omega \epsilon$

• Capacitance • Xc $[\Omega] = \frac{1}{j\omega C}$

Permittivity

• $\epsilon [F/m] = \epsilon_r * \epsilon_0$

Properties/Equations Continued

One Port

- S Parameter
 - S11
- Z– Parameter
 - Z11
- Conversion

• Z11=
$$Z_0 \frac{(1+S_{11})}{(1-S_{11})}$$

Two Port

- S Parameters
 - S11
 - S12
 - S21
 - S22

Materials

- Gelatin Based
 - Animal Hide Gelatin
 - Sodium Chloride
 - De-ionized Water
- Physiological Saline Based
 - 4 Mil PVC Sheeting
 - .9 % Physiological Saline
- Agar Based
 - Agar
 - TX-151
 - De-ionized Water
 - Sodium Chloride
 - Sucrose
 - Suttocide A
 - Germall Plus

Design Process

Design Process

Simulation

- Primary motivation
 - Use results from simulation to validate accuracy of physical model
- Process
 - Obtain model and choose simulation software
 - Zubal Model and High Frequency Structural Simulator (HFSS)
 - Convert model into a HFSS compatible format
 - Run simple verifiable simulations in HFSS
 - Incrementally increase simulation complexity
 - Run simulation with human model and compare results with physical model

Zubal Model

Test Equipment

- Function generator
- Oscilloscope
- LCR meter
- Conductivity Meter
- Network Analyzer

Testing

Testing

Results

Results

Phantom

The Oscilloscope signal was captured using a 20 Vpp input at 21 MHz from the function generator. 117 mV equates to -44.65 dB.

Human

The Oscilloscope signal was captured using a 20 Vpp input at 10 MHz from the function generator. 112 mV equates to -45.03 dB.

Results

Questions/Comments

Formulation

BOM

ltem	Description	Unit of Measure	Quantity	Price/Unit	Total Price
De-ionized Water	De-ionized water serves as base material for phantom	Liters	41.6	\$0.50	\$20.80
Agar Powder	Solidifying agent provides the phatnom with rigidity	Grams	1289.6	\$0.06	\$77.38
TX-151	Gelling agent strengthens the phantom and resists tearing	Grams	703.04	\$0.02	\$14.06
Sucrose	Used to lower the permitivity of the phantom	Grams	6755.84	\$0.001	\$6.76
Sodium Chloride	Used to lower the permitivity of the phantom	Grams	96.07936	\$0.002	\$0.19
Suttocide A	Antiseptic additive to extend shelf life	Liters	0.1664	\$38.04	\$6.33
Germall Plus	Antiseptic additive to extend shelf life	Liters	0.0416	\$36.69	\$1.53
Phantom Mold	Provide a rigid protective shell to the Phantom	Pieces	1	\$71.03	\$71.03
		Cost Per Liter	4.761321123	Total Cost	\$198.07